Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation

نویسندگان

  • J. Y. Tan
  • L. C. Lum
  • M. G. Lee
  • S. Mansouri
  • K. Hapgood
  • X. D. Chen
چکیده

Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapour precipitation (AVP), incorporating ethanol vapour as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility. Keywords—Absorption, antisolvent vapour precipitation, dissolution rate, folic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity

The aim of this study was to prepare micronized taxifolin powder using the supercritical antisolvent precipitation process to improve the dissolution rate of taxifolin. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters, such as temperature (35-65 °C), pressure (10-25 MPa), solution flow rate (3-6 mL/min) and concentration of the liquid ...

متن کامل

Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolven...

متن کامل

Physicochemical Properties and In Vitro Dissolution of Spiramycin Microparticles Using the Homogenate-Antisolvent Precipitation Process

Due to its low bioavailability and slow dissolution rate, the micronized spiramycin powder was thus prepared by the homogenate-antisolvent precipitation (HAP) process. The optimum micronization conditions of the HAP process were found to be as follows: precipitation temperature of 4.6 ◦C, precipitation time of 10 min, spiramycin concentration of 20 mg/mL, dripping speed of the added solvent int...

متن کامل

Effects of deep eutectic solvents in preparation of nanoparticles TiO2

Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...

متن کامل

Enhanced dissolution rate of tadalafil nanoparticles prepared by sonoprecipitation technique: optimization and physicochemical investigation

Nanocrystals of tadalafil, a poorly water-soluble drug, were successfully prepared by sonoprecipitation technique for improving the solubility and dissolution rate. Tween80 was selected as an efficient surfactant to inhibit aggregation in stabilization of drug nanocrystals. Response surface methodology based on central composite design (CCD) was utilized to evaluate the formulation factors affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014